The cube roots of ##8## are ##2##, ##2omega## and ##2omega^2## where ##omega=-1/2+sqrt(3)/2 i## is the primitive Complex cube root of ##1##.

Here are the cube roots of ##8## plotted in the Complex plane on the circle of radius ##2##:

graph{(x^2+y^2-4)((x-2)^2+y^2-0.01)((x+1)^2+(y-sqrt(3))^2-0.01)((x+1)^2+(y+sqrt(3))^2-0.01) = 0 [-5, 5, -2.5, 2.5]}

They can be written as:

##2(cos(0)+i sin(0)) = 2##

##2(cos((2pi)/3) + i sin((2pi)/3)) = -1 + sqrt(3)i = 2omega##

##2(cos((4pi)/3) + i sin((4pi)/3)) = -1 – sqrt(3)i = 2omega^2##

One way of finding these cube roots of ##8## is to find all of the roots of ##x^3-8 = 0##.

##x^3-8 = (x-2)(x^2+2x+4)##

The quadratic factor can be solved using :

##x = (-b +-sqrt(b^2-4ac))/(2a)##

##= (-2+-sqrt(2^2-(4xx1xx4)))/(2*1)##

##=(-2+-sqrt(-12))/2##

##=-1+-sqrt(3)i##

The post How Do You Get The Complex Cube Root Of 8 appeared first on Academic Works Help.

Our writing company helps you enjoy campus life. We have committed and experienced tutors and academic writers who have a keen eye in writing papers related to Business, Management, Marketing, History, English, Media studies, Literature, nursing, Finance, Medicine, Archaeology, Accounting, Statistics, Technology, Arts, Religion, Economics, Law, Psychology, Biology, Philosophy, Sociology, Political science, Mathematics, Engineering, Ecology etc.

##### Need Custom Written Paper?

-Plagiarism free

-Timely delivery